
Genetic Programming in Software Engineering

Leslie Loaiza-Meseguer, Angel J. Sánchez-García,
Jorge Octavio Ocharán-Hernández

Universidad Veracruzana,
Facultad de Estadística e Informática,

Mexico

leslielm63@gmail.com, {angesanchez, jocharan}@uv.mx

Abstract. Industry 4.0 has led to automatic optimization of process
improvements. Software Engineering is present in all the phases of the Software
Development Life Cycle, implying a systematic and disciplined process of
development. Nowadays there are optimization problems within the phases and
activities of Software Engineering, problems that can be solved with the
application of Genetic Programming. The purpose of this Systematic Literature
Review is to analyze the current state of the application of genetic programming
in Software Engineering by collecting the phases and activities of software
development where genetic programming has been used and summarizing the
advantages of using this technique. Thanks to this research work we found the
way in which genetic programming has been applied previously and the
advantages that its application has both in functional and non-functional
properties. In addition, the utility that it has for a software engineer to use this
technique as an automation tool in the process of software development
was found.

Keywords: Genetic programming, software engineering, systematic literature
review, optimization.

1 Introduction

Industry 4.0 seeks to improve processes and products through the incorporation of new
technologies, cloud computing, the Internet of Things and Artificial Intelligence,
among others. Software Engineering, for other hand, seeks to develop computer
systems through a systematic, disciplined and orderly process in order to obtain a
quality product and reduce the number of defects.

This implies that Software Engineering is present in all the phases of the life cycle
of a software project [1]. Nowadays there are optimization problems within the phases
and activities of Software Engineering that need to be solved since, during the
construction of a project, several factors can be found that negatively influence its
performance, production time, and reliability, among other aspects [2].

Genetic programming is applicable and effective for a wide variety of problems that
arise in a wide variety of fields, mainly for the development of computer programs that
perform a user-defined task. In addition, this technique is able to take advantage of the
exponential increase in available computational power and solve optimization problems

17

ISSN 1870-4069

Research in Computing Science 151(12), 2022pp. 17–26; rec. 2022-08-14; acc. 2022-11-18

[3]. In Software Engineering, genetic programming has been used to represent code
structures. It is reported that there are problems in the construction phase that have been
addressed with optimization algorithms [4], specifically with genetic programming for
code refactoring [5].

However, genetic programming is not limited to the coding phase, as it has impacted
activities such as Software reliability [5], code repair [6], defect prediction [7], among
others. With the above, it can be seen that the application of genetic programming
supports Software Engineers, providing them with tools that help them to increase the
efficiency of their work.

This paper is organized as follows: Section 2 describes the background as well as
related work. In Section 3, the method used to carry out this research work is detailed.
Section 4 presents the results obtained. Finally, section 5 draws the conclusions and
future work.

2 Background and Related Work

Software engineering activities employ economic and human resources and involve the
investment of time. Whether a software development project is successful or not
depends entirely on the human factor[2], which is found in different phases of software
development, such as design, construction and maintenance.

As a consequence of these factors, artificial intelligence techniques have been used
to help reduce time, costs and human errors. Recent works have shown that Artificial
Intelligence can bring benefits in each of the phases of software development, for
example, requirements analysis [8], design [9], coding and testing[10].

It is reported that there are problems in the construction phase that have been
addressed with optimization algorithms [4] specifically with genetic programming for

Table 1. Research questions.

Quesition Motivation

RQ1.- In which phases of software
development has genetic
programming been used?

The purpose of this question is to know the phases of
software development in which genetic programming
has been used to identify promising areas of the use of
this technique or its variants.

RQ2.- In which activities of the
software development phases has
genetic programming been used?

It is important to identify which are the specific activities
of each of the Software Engineering phases where
genetic programming has been applied to promote
improvements in software engineers.

RQ3.- What are the advantages of
using genetic programming?

It is important to know about the benefits of applying
genetic programming and why to use it in the different
Software Engineering activities.

Table 2. Keywords and synonyms identified.

Concept Synonyms

Software Engineering

Genetic programming GP

18

Leslie Loaiza-Meseguer, Angel J. Sánchez-García, Jorge Octavio Ocharán-Hernández

Research in Computing Science 151(12), 2022 ISSN 1870-4069

code refactoring [5]. Genetic programming is an extension of the traditional genetic
algorithm in which each individual in the population is represented as a program variant
(patched program).

The program variant is generated using one of the operations of the genetic
algorithm: mutation and crossover. The acceptability of each variant is calculated
through a user-defined fitness function.

These program variants that obtain high fitness scores are selected for the next
evolution. The evolution process will continue again and again until a valid patch is
found [6].

In a manual search of related work, no Systematic Literature Review on the
application of genetic programming in Software Engineering was identified. For this
reason, the main objective of this research is to describe the current state of the use of
genetic programming in each of the phases of the software development life cycle,
emphasizing the benefits for (although not limited to) software engineers, software
developers and testers.

3 Research Method

The method used to carry out this systematic review of the literature is based on the
guidelines proposed by Kitchenham & Charters [11], which are described below.

3.1 Research Questions

The research questions that guided this systematic review are shown in Table 1.

Table 3. Data source.

Database Website

IEEE Xplore https://ieeexplore.ieee.org/Xplore/home.jsp

Science direct https://www.sciencedirect.com/

ACM https://dl.acm.org/

Springer Link https://link.springer.com/

Table 4. Inclusion criteria.

ID Description

IC1 Studies with full access.

IC2 Studies published between 2017 and 2022

IC3
Studies that in the title or abstract allude to any of the phases or activities of
software engineering.

IC4
Studies that contain in the abstract indications of answering at least one research
question.

19

Genetic Programming in Software Engineering

Research in Computing Science 151(12), 2022ISSN 1870-4069

3.2 Search Strategy and Data Sources

The terms used to search for the primary studies are defined in Table 2. Being an
exploratory study, each phase of software development (such as requirements, design,
coding or testing) was not placed in the search string.

In addition, the term “Software Engineering” was added, which implies a
development process, instead of putting only the term “software” since studies referring
to the use of software to test genetic programming in different areas could be included.
The search string used is based on the search terms defined above and is made up
as follows:

“Software Engineering” AND “Genetic programming”

Table 3 shows the databases that were selected for the search of the primary studies,
as well as their e-mail addresses.

3.3 Selection of Primary Studies

The inclusion and exclusion criteria described in Table 4 and 5 are intended to
determine which studies will be included or excluded for the elaboration of this study.

3.4 Selection Procedure

The primary study selection procedure consists of four stages. Fig. 1 shows in detail
the primary study selection criteria previously defined in section 3.3 that are applied in
each of these stages. Table 6 shows in detail the results of each database during the
4 stages.

The list of references of the 41 primary studies selected can be found in [12]. The
template used to extract data from each primary study can be found in [13]. The
questions defined in order to evaluate the quality of primary studies can be found
in [14].

Table 5. Exclusion Criteria.

ID Description

EC1 Studies in a language other than English.

EC2 Studies that are book chapters, presentations, abstracts or technical reports.

EC3 Repeated or duplicated studies.

Fig. 1. Primary study selection procedure.

20

Leslie Loaiza-Meseguer, Angel J. Sánchez-García, Jorge Octavio Ocharán-Hernández

Research in Computing Science 151(12), 2022 ISSN 1870-4069

4 Results

As a result of the application of stage 4 of the primary study search selection process,
of the 41 resulting studies were identified. The most came from SpringerLink (34%),
followed by ACM (32%), IEEE Xplore (29%) and ScienceDirect (5%). Of these
selected studies, 59% correspond to articles published in journals, while 41% are
conference papers, as it is shown in Fig. 2.

The distribution of primary studies by year of publication was also identified, with
the majority of studies coming from 2017 and 2021, as it is shown in Fig. 3.

4.1 RQ1.- In Which Phases of Software Development has Genetic Programming
Been Used?

As can be seen in Fig. 4, the phase that has had the most applications of genetic
programming, is the construction phase, occupying 68% of the total selected studies.

It was found that the tree structure used by genetic programming to represent its
individuals (computer programs) is very useful for the construction of software, since
it allows the creation of a new code from an existing code [15]; thus, removing branches
from one tree to insert them into another [16], which promotes the improvement of both
functional and non-functional properties [17], automatic code generation[18], as well
as code reuse and restructuring[19].

Genetic programming was found to be a tool that facilitates pattern identification
[20], this property allows us to identify code smells [21], locate faults [22] and patch
generation [23]; the latter enables automatic program repair [24]. On the other hand,
the Testing phase is mentioned in 20% of the articles.

Wei et al. [25] again points out the ability of genetic programming for pattern
identification, which, according to their study, allows the identification of the worst-
case scenario in the execution of a software, as well as the detection of vulnerabilities
and performance errors.

Other authors propose that the application of genetic programming allows the
automation of black box testing [26] and the evaluation of graphical interfaces [27].
Regarding the Design phase, only 7% of the articles were found to mention it. It was
found that genetic programming helps the automation of both prototype generation [28]
and modeling of software product lines [29].

Table 6. Application of inclusion and exclusion criteria by stage.

Stage IEEE Xplore ACM SpringerLink ScienceDirect Total

Initial search 182 613 2,741 476 4,012

Stage 1 28 235 226 31 520

Stage 2 25 196 190 17 428

Stage 3 12 18 14 2 46

Stage 4 12 13 14 2 41

21

Genetic Programming in Software Engineering

Research in Computing Science 151(12), 2022ISSN 1870-4069

Finally, the Planning phase was found to be present in 3% of the articles and the
Maintenance phase in 2%, indicating a lack of information on the areas of opportunity
for genetic programming in these phases.

4.2 RQ2.- In Which Activities of the Software Development Phases Has Genetic
Programming Been Used?

Twenty-seven papers that mention activities of software development phases involving
the application of genetic programming were found. In the Planning phase, by applying
genetic programming in the restructuring of plans, initializing the population of
individuals with existing plans, we can reuse their information to carry out the
generation of new plans [30].

In the Design phase it was found that 67% of the items correspond to prototype
generation. This activity is achieved by automating the definition of basic elements and
the way to combine them, to be subsequently composed and tested with real users and
thus find the optimized compositions [31].

The 33% of the articles refer to the modeling of Software Product Lines (SPL). The
automatic generation of the generic models used by this activity is possible by means
of an initial population of these and the calculation of the set of valid characteristics for
each one, to subsequently apply genetic programming to them [29].

In the Construction phase we were able to identify that 32% of the items correspond
to the activity of automatic program repair. This activity aims to generate error repairs
without human intervention, without the need for special instrumentation or annotations
in the source code [32].

This application searches and generates modifications from an abstract syntax tree
that can patch a bug in the underlying program and creates new program variants by
mutation and crossover [15].

Fig. 2. Selected primary studies by publication type.

Fig. 3. Selected primary studies by year.

Journal
59%

Conference
41%

11

5
7

5

11

2

0

5

10

15

2017 2018 2019 2020 2021 2022

22

Leslie Loaiza-Meseguer, Angel J. Sánchez-García, Jorge Octavio Ocharán-Hernández

Research in Computing Science 151(12), 2022 ISSN 1870-4069

The 32% of the articles mention automatic coding of programs, for this activity it is
important to mention that one of the most relevant applications of genetic programming
is the technique called program synthesis, which is able to automatize the coding of
programs by automatically generating source code in a programming language, that
maintains the constraints of a predefined specification [32].

It was determined that 31% of the articles correspond to the identification of bugs in
the software, which is achieved through the identification of recurrences [24] and
sequence-by-sequence learning [15].

These properties are useful in code smells identification [21] and fault localization
[17]. Finally, 5% of the articles mention that genetic programming supports code
restructuring by identifying patterns within the code, in order to subsequently optimize
its fragments and reuse them to create new code [19].

In the testing phase, it was found that 67% of the articles talk about black box testing,
to which the application of genetic programming is useful to discover local variables,
actions performed on output variables, counting loops and while loops, due to the
ability of genetic programming to discover a functional relationship between data
features and to group them into categories [26].

Also, the application of genetic programming in black box testing is useful when
identifying worst-case execution as well as vulnerabilities in programs by identifying
patterns in data inputs [25].

The 33% of the articles allude to interface evaluation, where genetic programming
allows the automatic generation of rules to evaluate their quality, providing previously
defined quality metrics, context criteria and list of possible types of problems, taking
advantage of the principle of genetic programming where individuals adapt to their
environment through mutation and crossover [27].

4.3 RQ3.- What are the Advantages of Using Genetic Programming?

Based on the answers to questions RQ1 and RQ2, it was found that thanks to the
mutation and crossover operators, the principles of biological evolution on which
genetic programming is based and its ability to identify patterns, there are numerous
advantages in the different phases and activities of software development.

The use of genetic programming in the Planning phase, serves for the restructuring
of plans, reducing the costs of operating in complex environments of change and
uncertainty, by adapting autonomously to change in the pursuit of its quality objectives

Fig. 4. Selected primary studies by phase.

Planning
3%

Design
10%

Construction
68%

Testing
17%

Maintenance
2%

23

Genetic Programming in Software Engineering

Research in Computing Science 151(12), 2022ISSN 1870-4069

[30]. In the Design phase, prototyping [31] and modeling of software product lines [29]
can be automated using genetic programming, greatly improving the performance of
these activities [28].

In the Construction phase, the application of this technique helps in the automation
of different activities such as program repair [32], bug identification [24] and code
restructuring [19]. Obtaining the improvement of both functional and non-functional
properties, such as code size, execution time or memory consumption [17].

Furthermore, genetic programming is a technique that has great flexibility since it
offers the possibility of handling a large number of individuals and of reworking the
solutions obtained by relaunching a new evolution from one or more previously
obtained solutions, so that, with its application, the activity of evaluating graphical
interfaces can be automated and thus optimize the process involved [17].

All this together helps a software engineer to do his job efficiently since it eliminates
the manual part of his work and increases the quality of his results.

5 Conclusions and Future Work

This paper identified the phases and activities of software development in which genetic
programming has been applied, as well as the advantages of using it. A systematic
Literature Review was carried out where the selection process of primary studies was
divided into 4 parts where, after applying the previously defined selection criteria, 41
primary studies were obtained as a result.

Subsequently, after carrying out a preliminary data synthesis, the primary studies
were classified into 5 development phases: Planning, Design, Construction, Testing and
Maintenance. The software development phase where genetic programming proved to
have more applications is the Construction phase with 28 articles, followed by the
Testing phase with 8 articles, the Design phase with 3 articles and the Planning and
Maintenance phases with 1 article each.

With respect to the research questions, thanks to the data synthesis, it was found the
way in which genetic programming has been previously applied, the advantages of its
application in both functional and non-functional properties, in addition to the
usefulness for a software engineer to use this technique as an automation tool in the
different processes that exist at the time of software development. As a result, the
objectives of the research work were achieved.

It was found that genetic programming has a great relationship with well-established
areas, for example, Program synthesis, which has a strong impact on new fields such
as Genetic improvement. This field of science uses genetic programming to correct
bugs in software and improve both functional and non-functional software
requirements [19]. Therefore, as future work, we will seek to identify the applications
and advantages of these areas.

References

1. Boehm, B.: Software engineering. IEEE Transactions on Computers, pp. 1226–1241 (1976)
doi: 10.1109/TC.1976.1674590

24

Leslie Loaiza-Meseguer, Angel J. Sánchez-García, Jorge Octavio Ocharán-Hernández

Research in Computing Science 151(12), 2022 ISSN 1870-4069

2. Yanyan, Z, Renzuo, X.: The basic research of human factor analysis based on knowledge in
software engineering. In: 2008 International Conference on Computer Science and Software
Engineering, pp. 1302–1305 (2008) doi: 10.1109/CSSE.2008.219

3. Koza, J. R.: Genetic programming: On the programming of computers by means of natural
selection, MIT press (1992)

4. Robles-Aguilar, A, Ocharán-Hernández, J. O., Sánchez-Garcia, A. J., Limon, X.: Software
design and artificial intelligence: A systematic mapping study. In: 2021 9th International
Conference in Software Engineering Research and Innovation (CONISOFT), pp. 132–141
(2021) doi: 10.1109/CONISOFT52520.2021.00028

5. Chen, H, Zhang, Y, Zhao, J.: Improved genetic programming model for software reliability.
In: 2009 International Asia Symposium on Intelligent Interaction and Affective Computing,
pp. 164–167 (2009) doi: 10.1109/ASIA.2009.38

6. Qi, Y., Mao, X., Lei, Y., Dai, Z., Wang, C.: Does genetic programming work well on
automated program repair? In: 2013 International Conference on Computational and
Information Science, pp. 1875–1878 (2013) doi: 10.1109/ICCIS.2013.490

7. Rathore, S. S., Kuamr, S.: Comparative analysis of neural network and genetic programming
for number of software faults prediction. In: 2015 National Conference on Recent Advances
in Electronics and Computer Engineering (RAECE), pp. 328–332 (2015) doi: 10.1109/
RAECE.2015.7510216

8. Ernst, N. A., Gorton, I.: Using AI to model quality attribute tradeoffs. In: 2014 IEEE 1st
International Workshop on Artificial Intelligence for Requirements Engineering (AIRE),
pp. 51–52 (2014) doi: 10.1109/AIRE.2014.6894856

9. Wangoo, D. P.: Artificial intelligence techniques in software engineering for automated
software reuse and design. In: 2018 4th International Conference on Computing
Communication and Automation (ICCCA), pp. 1–4 (2018) doi: 10.1109/CCAA.20
18.8777584

10. Xie, T.: The synergy of human and artificial intelligence in software engineering. In: 2013
2nd International Workshop on Realizing Artificial Intelligence Synergies in Software
Engineering (RAISE), pp. 4–6 (2013) doi: 10.1109/RAISE.2013.6615197

11. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature reviews in
software engineering. Keele University and Durham University Joint Report (2007)

12. Appendix A Primary studies references: https://docs.google.com/document/d/11uCIfSXL-
hxb1xVBhpcbCOF1T0rUyC99TBMfdck9R5c/edit?usp=sharing

13. Appendix B Data extraction template: https://docs.google.com/document/d/1JQ4
x7up_ZlkXBol26z500ff-wK4DlH14IWh274JBJp8/edit?usp=sharing

14. Appendix C Quality assessment questions: https://docs.google.com/document/d/1RQuy
Ztujhr0wHsWES8dR2nswFO25pIjLozUTfKcxZao/edit?usp=sharing

15. Li, D., Wong, W. E., Jian, M., Geng, Y., Chau, M.: Improving search-based automatic
program repair with neural machine translation. IEEE Access, vol. 10, pp. 51167–51175
(2022) doi: 10.1109/ACCESS.2022.3164780

16. Langdon, W. B., Lam, B. Y., Modat M., Petke, J., Harman, M.: Genetic improvement of
GPU software. Genetic Programming Evolvable Machines, vol. 18, pp. 5–44. (2017) doi:
10.1007/s10710-016-9273-9

17. Sohn, J., Yoo, S.: Empirical evaluation of fault localization using code and change metrics.
IEEE Transactions on Software Engineering, vol. 47, no. 8, pp. 1605–1625 (2021) doi:
10.1109/TSE.2019.2930977

18. Miller, J. F.: Cartesian genetic programming: Its status and future. Genetic Programming
Evolvable Machines, vol. 21, pp. 129–168 (2020) doi: 10.1007/s10710-019-09360-6

19. Krauss, O.: Genetic improvement in code interpreters and compilers. In: Proceedings
Companion of the 2017 ACM SIGPLAN International Conference on Systems,
Programming, Languages, and Applications: Software for Humanity, pp. 7–9 (2017) doi:
10.1145/3135932.3135934

25

Genetic Programming in Software Engineering

Research in Computing Science 151(12), 2022ISSN 1870-4069

20. Huppe, S., Saied, M. A., Sahraoui, H.: Mining complex temporal API usage patterns: An
evolutionary approach. In: 2017 IEEE/ACM 39th International Conference on Software
Engineering Companion (ICSE-C), pp. 274–276 (2017) doi: 10.1109/ICSE-C.2017.147

21. Kessentini, M., Ouni, A.: Detecting android smells using multi-objective genetic
programming. In: 2017 IEEE/ACM 4th International Conference on Mobile Software
Engineering and Systems (MOBILESoft), pp. 122–132 (2017) doi: 10.1109/MOBILE
Soft.2017.29

22. Kim, Y., Mun, S., Yoo, S., Kim, M.: Precise learn-to-rank fault localization using dynamic
and static features of target programs. ACM Transactions on Software Engineering and
Methodology, vol. 28, no. 4, pp. 1–34 (2019) doi: 10.1145/3345628

23. Cao, H., Liu, F., Shi, J., Chu, Y., Deng, M.: Automated repair of Java programs with random
search via code similarity. In: 2021 IEEE 21st International Conference on Software
Quality, Reliability and Security Companion (QRS-C), pp. 470–477 (2021) doi: 10.1109/Q
RS-C55045.2021.00075

24. Yuan, Y., Banzhaf, W.: Toward better evolutionary program repair. ACM Transactions on
Software Engineering and Methodology, vol. 29, pp. 1–53 (2020) doi: 10.1145/3360004

25. Wei, J., Chen, J., Feng, Y., Ferles, K., Dillig, I.: Singularity: Pattern fuzzing for worst case
complexity. In: Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, pp.
213–223 (2018) doi: 10.1145/3236024.3236039

26. Drusinsky, D.: Reverse engineering concurrent UML state machines using black box testing
and genetic programming. Innovations in Systems Software Engineering, vol. 13, pp. 117–
128 (2017) doi: 10.1007/s11334-017-0299-9

27. Ines, G., Makram, S., Mabrouka, C., Mourad, A.: Evaluation of mobile interfaces as an
optimization problem. Procedia Computer Science, vol. 112, pp. 235–248 (2017) doi:
10.1016/j.procs.2017.08.234

28. Valencia-Ramírez, J. M., Graff, M., Escalante, H. J., Cerda-Jacobo, J.: An iterative genetic
programming approach to prototype generation. Genetic Programming Evolvable
Machines, vol. 18, pp. 123–147 (2017) doi: 10.1007/s10710-016-9279-3

29. Vescan, A., Pintea, A., Linsbauer, L., Egyed, A.: Genetic programming for feature model
synthesis: A replication study. Empirical Software Engineering, vol. 26, no. 58 (2021) doi:
10.1007/s10664-021-09947-7

30. Kinneer, C., Coker, Z., Wang, J., Garlan, D., Le-Goues, C.: Managing uncertainty in self-
adaptive systems with plan reuse and stochastic search. In: Proceedings of the 13th
International Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), pp. 40–50 (2018) doi: 10.1145/3194133.3194145

31. Salem, P: User interface optimization using genetic programming with an application to
landing pages. In: Proceedings of the ACM Human-Computer Interaction, vol. 1, pp. 1–17
(2017) doi: 10.1145/3099583

32. Sobania, D., Rothlauf F.: A generalizability measure for program synthesis with genetic
programming. In: Proceedings of the Genetic and Evolutionary Computation Conference,
pp. 822–829 (2021) doi: 10.1145/3449639.3459305

26

Leslie Loaiza-Meseguer, Angel J. Sánchez-García, Jorge Octavio Ocharán-Hernández

Research in Computing Science 151(12), 2022 ISSN 1870-4069

